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ABSTRACT

Objective: Fertility tracking devices offer women direct-to-user information about their fertility.
The objective of this study is to understand how a fertility tracking device algorithm adjusts to
changes of the individual menstrual cycle and under different conditions.

Methods: A retrospective analysis was conducted on a cohort of women who were using the
device between January 2004 and November 2014. Available temperature and menstruation inputs
were processed through the Daysy 1.0.7 firmware to determine fertility outputs. Sensitivity analyses
on temperature noise, skipped measurements, and various characteristics were conducted.
Results: A cohort of 5328 women from Germany and Switzerland contributed 107,020 cycles.
Mean age of the sample was 30.77 [SD 5.1] years, with a BMI of 22.07 kg/mo2 [SD 2.4]. The mean
cycle length reported was 29.54 [SD 3.0] days. The majority of women were using the device 80-
100% of the time during the cycle (53.1%). For this subset of women, the fertility device identified
on average 41.4% [SD 6.4] possibly fertile (red) days, 42.4% [SD 8.7] infertile (green) days and
15.9% [SD 7.3] yellow days. The number of infertile (green) days decreases proportionally to the
number of measured days, whereas the number of undefined (yellow) days increases.

Conclusion: Overall, these results showed that the fertility tracker algorithm was able to distin-
guish biphasic cycles and provide personalised fertility statuses for users based on daily basal
body temperature readings and menstruation data. We identified a direct linear relationship
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between the number of measurements and output of the fertility tracker.

Introduction

Fertility Awareness-Based Methods (FABM) are a set of fam-
ily planning methods based on a woman'’s periodic fertility
[1-3]. FABMs can be used for avoiding or achieving preg-
nancy, and as a way to monitor gynecological health by
observing one or more of the three primary fertility signs
(basal body temperature (BBT), cervical mucus, and cervical
position) [4]. Research has found that 20% of all women in
the United States have tried a FABM at some point in their
lives [5]. Recent interest in hormone and side-effect free
family planning methods has contributed to the growing
demand of FABMs. A population-based survey of women in
the United States showed that 41% of women reported
that they did not use hormonal contraceptives due to fear
of side-effects [5].

Typically, use of a FABM requires an understanding of
one’s own biology, discipline and the proper educational
training [6,7]. Furthermore, reading and interpreting data is
open to human error, potentially reducing the method’s
efficacy [8,9]. In the last two decades, the observation and
calculation of fertility with pen and paper has been increas-
ingly replaced by new, sophisticated devices capable of
measuring, storing and evaluating the direct or indirect
signs of fertility [10,11]. With a rapidly evolving market for
digital fertility tracking, there is the need for verification of
a mobile application’s safety to correctly provide fertility
information. Most fertility tracking application (FTA)

algorithms are not designed based on evidence-based
methods or research nor have they been evaluated in
peer-reviewed literature [12,13]. Women around the world
are in need of accurate, timely, and easily accessible infor-
mation about their fertility. The probability of pregnancy
changes throughout the menstrual cycle. With digital fertil-
ity trackers, women can receive information about their fer-
tility and can make informed decisions based on their
reproductive intention [14,15].

The Fertility Tracker (Daysy) is a fertility awareness-based
device based on LadyComp, BabyComp and Pearly. Users
record daily BBT measurements once a day in the morning
immediately after waking up and also confirm their men-
struation. The device displays the user's fertility status
through LED lights, in which green indicates ‘infertile’, red
indicates ‘possibly fertile’ and yellow indicates ‘undefined’
(Figure 1). The colours are indicative of a woman'’s fecund-
ability determined by the amount of data provided by the
users. Consistently measuring BBT lowers the amount of
‘red’ of ‘possibly fertile’ days as the device caters to the
user’s individual menstrual cycle. In Europe, the Fertility
Tracker (Daysy) is considered to be an invasive active med-
ical device. DaysyDay, a free mobile app is an optional sup-
plement to the Fertility Tracker. Available on iOS and
Android platforms, the DaysyDay app offers a graphical dis-
play of the user’s fertility status each day of her cycle, tem-
perature curves, and numerous statistics (Figure 1).
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Figure 1. Visual of Daysy device and DaysyDay App.

There are several apps and devices on the market based
on some variation of the symptothermal method, which
use two different symptoms, observation and precise inter-
pretation of cervical mucus and/or daily measurement and
evaluation of basal temperature to determine the beginning
and end of the fertile window. By means of different rules,
the fertile window can be relatively predicted. Few studies
have looked at the applicability of these apps and devices
to adapt to changes in the menstrual cycle. There are also
no studies that investigates how digitally programmed crite-
ria of a BBT shift detection algorithm correlate with individ-
ual cycle characteristics on a daily basis. In this study, we
aim to assess how the fertility tracking device algorithm
adjusts to changes of the individual menstrual cycle.

The analysis aims to better understand and identify any
errors or discrepancies in Fertility Tracker's outputs and how
physiological factors directly influence the outcome of the
algorithm (i.e., age, BMI, cycle length, measurement skipping,
high vs. low average temperature, temperature steps).

Methods
Fertility tracker device

The Fertility Tracker was developed in what is referred to
as the calculothermal method, which assumes that all non-
fertile days are ‘possibly’ fertile due to the variability of the
individual cycle. By measuring BBT, the time-point of ovula-
tion and thus the infertile days after ovulation can be pre-
cisely defined [16]. By statistically estimating when
ovulation occurred individually in previous cycles, it is also

36.33°C

possible to determine the infertile days after menstruation,
i.e, before the beginning of the fertile window [17]. Since
the calculothermal algorithm takes into account each new
cycle individually in the calculation of infertile days, it rep-
resents a flexible compromise between variable and con-
stant cycles among the FABMs.

The Fertility Tracker takes into account daily measured
BBT as well as the start and end of menstruation each cycle
to provide real-time fertility information, but it does not
predict the end of the fertile window in advance. The
Fertility Tracker only shows the fertility status of the current
day, as it is not possible to show status for future days in
the cycle. This approach allows the Fertility Tracker to
adapt to the natural variation of a woman’s menstrual
cycle. By combining the acquisition and learning of new
data (the daily orally measured BBT, start and end of men-
struation, accumulated past cycle data) and statistical
methods (e.g., the temperature rises after ovulation), the
Fertility Tracker is able to support women with their fam-
ily planning.

As users continue to use the Fertility Tracker, the algo-
rithm uses statistical methods and previous cycle history to
better determine a user’s fertility status after menstruation
but prior to ovulation. A sustained increase in the rolling
average BBT of at least 0.2-0.3°C for a minimum of two to
three calendar days after the expected time of ovulation is
necessary to determine a temperature shift by the algo-
rithm. The algorithm then compares the predicted date to
the calculated ovulation date at the end of the cycle to
update the model accordingly, as shown in Figure 2.
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Figure 2. Modifed BBT shift detection algorithm.

Study design

Retrospective data analysis was conducted to assess how
the fertility tracking device algorithm adjusted to changes
in the menstrual cycle. The study protocol was reviewed
and authorised by the regional ethics committee (FAU/
Erlangen/13_20 Bc). Anonymized data collected from exist-
ing LadyComp, BabyComp and Pearly users between 1
January 2004 and 1 November 2014 was used for this
study analysis. Women with cycles shorter than 19days
and longer than 50days were excluded. Furthermore, data-
sets had to contain at least one complete cycle to be
included in the analysis. Cycles in which pregnancy was
assumed by a significantly high temperature (post-ovula-
tion phase) was present for more than 25days, were
excluded from the analysis. Data sets included temperature
and menstruation cycle data (e.g., menstruation date, men-
strual cycle length) as well as sociodemographic variables
(e.g., age, height, weight, location). The 5th and 95th per-
centiles were excluded from the cycle characteris-
tics analysis.

Analysis

Available temperature and menstruation inputs were proc-
essed through Daysy firmware to receive fertility outputs
(red, green, or yellow days). Fertility estimates were calcu-
lated and the key results stored in an Excel table. Raw data
stored on the devices can be uploaded into an analysis
program (VE Analyser) and used to generate a BBT Chart.
Data from the pdf files were used for the comparison to
the data in the excel sheet. Further information on the
information provided in the pdf files can be found
in Appendix.

We assessed the impact of missing temperature infor-
mation. Fertility estimates were calculated for datasets that
provided data between 0-20% of their cycle, 20-40%, 40-
60%, and 80-100%. Temperature noise was also assessed in
an independent model, through theoretical simulation test-
ing. Fertility Tracker's algorithm was fed with defined
standard deviation temperature values of ©=0.05°C,
6=0.1°C, 6=0.2°C, 6=0.3°C for 3 cycles each. The data
set for this analysis contained cycles that were 28-days
long and included 100% measurement of BBT. Third,

CYCLE DAYS

fertility estimates were collected from cycles with various
temperature noise and BBT measurement skipping using
the real-world cohort. Cycles were divided into two groups
that had measured more than 60% or more than 90%.
Cycles that had measured less than 60% were removed
from this analysis. We identified menstrual cycle days that
were indicated as green (infertile) by the device, but were
within the six day fertile window or two days after the sig-
nificant temperature rise (defined as the estimated period
of ovulation). Then, we compared the distribution of false
positive green days from the device to previously identified
daily fecundability probabilities, to better understand the
gaps in measurement.

Sensitivity analysis

Lastly, an analysis was conducted with 16 unique datasets
(long cycles, short cycles, etc) with 20 users each. The
randomised selection of the data samples is described in
detail in the Appendix

Results
Sample characteristics

A cohort of 5328 women from Germany and Switzerland
contributed 107,020 cycles. A total of 310 women were
excluded from the analysis due to a lack of at least one
complete cycle. On average, women contributed 21.5 com-
plete cycles and measured their BBT 69.77% [SD 23.5] dur-
ing their cycle. For this analysis, we excluded 17,040 cycles
due to elevated post ovulation temperature longer than
25days as it is an indication of pregnancy. The average
number of BBT recordings per cycle was 25.26 days [SD
6.3]. Almost half of the sample, 47.2% (n=2516) did not
report their age, height and weight, therefore BMI could
not be calculated. However, 52.8% (n=2812) of the sample
was within normal/healthy BMI limits, with a mean age of
30.77 [SD 5.1] and a mean BMI of 22.07 kg/mo2 [SD 2.4]
(Figure 3). The mean cycle length of the remaining cycles
(n=93,569) was 29.54 [SD 3.0] days. The majority of cycles
(67.8%) were 25-30days long, with a mean cycle length of
27.5days. We found 4.4% of cycles (n=3589) to be
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Figure 3. Mean Age and BMI of study sample.

identified as monophasic cycles (anovulatory). Of this sub-
set, 49.2% of these cycles were identified as short cycles
(13-20days). The average length of the pre-ovulation phase
was 16.8 [SD 2.9] days while the average post-ovulation
phase length was 12.8 [SD 1.6] days long. We found that
only 12.5% of cycles were 28 days long.

Fertility outputs

The majority of women were using the device 80-100% of
the time during the cycle (53.1%). For this subset of
women, the fertility device identified on average 41.4% [SD
6.4] possibly fertile (red) days, 42.4% [SD 8.7] infertile
(green) days and 15.9% [SD 7.3] yellow days (Table 1). The
number of infertile (green) days decreases proportionally to
the number of measured days, whereas the number of yel-
low (undefined) days increases. For users measuring their
BBT for 60-80% of their cycle, the device on average identi-
fies 35.4 [SD 8.3] infertile (green), 39.9 [6.6] possibly fertile
(red), and 15.9 undefined (yellow) days (Table 1).

As shown in Table 2, temperature noise has a direct
influence on the output of the fertility algorithm. When
sigma is very low (0.05°C), the algorithm provides more
green (fertile) days (56%) and the least yellow (undeined)
(4%) days. At a very high sigma (0.30°C), Fertility Tracker
displayed relatively less green (43%) and more yellow days
(17%). The percent of possible fertile (red) days is roughly
unchanged in either simulation.

The real-world data set was further analysed
against temperature noise and skipped BBT measurement
(Table 3). The average standard deviation value of the
measured temperature in total was 0.17°C [0.05]. If users
have measured more than 60% (Gr.1), a similar linear distri-
bution of infertile (green) and undefined (yellow) days was
observed as in the simulation. In contrast to the simulation,
there was also a linear change in the potentially fertile
(red) days for the real-world data set. The highest ratio of
infertile 45.7% [SD 13.9] and fertile 40.1%[10.6] days can be
found at a temperature standard deviation of 0.1°C on
average and a measuring rate of >90% (Table 3).

Sensitivity analysis

There were 300 women in this analysis who contributed a
total of 9934 completed cycles (Table 4). The average age

250 A

200 |
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Table 1. Distribution of fertile (green), possibly fertile (red) and undefined
(yellow) days depending on the amount of measurement.

Infertile Fertile undefined
Measured (%) Cycles (green)% (red)% (yellow)%
0-20 1842 (2.04%) 8.1 [4.7] 18.4 [27.1] 73.5 [17.6]
20-40 5039 (5.6%) 16.8 [5.9] 257 [11.2] 57.4 [15.1]
40-60 11.915 (13.2%) 259 [6.7] 33.6 [8.3] 40.3 [11.5]
60-80 23.379 (26.0%) 35.4 [8.3] 39.9 [6.6] 24.5 [8.9]
80-100 47.800 (53.1%) 424 [8.7] 41.4 [6.4] 15.9 [7.3]

Table 2. Mimic of the distribution of fertile (green), possibly fertile (red),
and undefined (yellow) days depending on the standard deviation [sigma].

Cycles (n=3) 100% measured

infertile Fertile Undefined
Sigma [C] (green)% (red)% (yellow)%
0.05 (low noise) 56% 40% 4%
0.10 54% 38% 7%
0.20 52% 38% 9%
0.30 (high noise) 43% 39% 17%

of this sub-sample was 32.5 [SD 8.4] years, an average of
BMI 23.8 [7.3] kg/m? and measured their BBT 87.6% of
their cycle [SD 7.4] The average cycle length was 30.1 [SD
6.4] days. The mean cycle length was 30.1 [SD 6.4]. Overall,
39.6% [SD 5.8] of cycles were identified as possibly fertile
(red) days, 41.8% [SD 9.4] infertile (green), and 16.5% [SD
8.1] undefined (yellow) days.

The longest pre-ovulation phase with 31.0 [3.2] days on
average was found in the group with long cycles, the
shortest phase with 12.3 [0.5] days on average in the group
with short cycles. The post-ovulation phase is similarly sta-
ble in all groups with 12.9 [1.5] days on average. Under
normal use (Gr.2; >75% measured), on average 44% of
days during the menstrual cycles were identified as green
days. The number of these green days is increased to a
maximum of 49.4% with the ‘ideal use’ (Gr.1; >90% meas-
ured) of the Fertility Tracker.

For users under both normal and ideal use, 0.5% of the
displayed green days were identified as ‘false positive’
green days in the six day fertile window or two days after
the significant temperature rise. Unsurprisingly, for users
with long cycles (Gr.3) (on average 44.9days) there were
45.1% red days and 27.4% green days. Based on the ear-
liest temperature rise observed in previous cycles, the pro-
grammed algorithm for the pre-ovulation phase assumes
that all days could be potentially fertile. Compared to
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Table 3. Distribution of fertile (green), possibly fertile (red) and unsafe (yellow) days depending on the standard deviation [sigma].

Gr.1
Cycles (n=79.031)
>60 %measured

Gr.2
Cycles (n=25.085)
>90 %measured

Sigma [C] Cycles (n) % infertile (green) % fertile (red) % uncertain Cycles % infertile (green) % fertile (red) % uncertain
0.10 27.795 (35.2%) 41.4 [13.5] 39.2 [11.3] 17.8 [19.7] 9785 (39.0%) 45.7 [13.9] 40.1 [10.6] 13.5 [7.9]
0.20 49.978 (63.2%) 38.6 [12.3] 40.3 [10.9] 19.5 [18.4] 14.868 (59.3%) 433 [83] 416 [5.7] 14.9 [7.2]
0.30 1250 (1.6%) 30.8 [18.3] 45.2 [14.8] 226 [21.7] 427 (1.7%) 33.0 [7.7] 45.6 [7.3] 20.8 [9.6]

regular cycles in Table 4, 0.3% [SD 0.1] of short and 1.5%
[SD 0.2] of irregular cycles 1.5% [SD 0.6] showed signifi-
cantly (****t-test, p<0.0001) more false positive green
days. Compared to regular cycles, significantly fewer
(F***t-test, p<0.0001) false green days were identified
among the group with a high temperature step between
the pre- and post-ovulation phase. It is noticeable that half
of these false positive days (51.8%) were displayed incor-
rectly when the fertile window was identified immediately
after or during menstruation.

For the group with short cycles (Gr.4) that has (cycle
length on average 23.5days) there were 44.3% green and
39.3% red days which corresponds to the ratio of ‘normal
use.” This group has the most false positive green days in
the analysis. However, on closer analysis shows that the
majority of all false positive green days (64.3%) are related
to the fifth and fourth day before the significant tempera-
ture rise respectively.

A total of 0.6% [SD 0.1] of all displayed green (infertile)
days by the Fertility Algorithm were identified as false posi-
tives in the fertile window. Table 5 shows the distribution of
all false green days (FGD) over the different days of the fer-
tile window. The highest percentage of false positive green
days (49.42%) was detected 5days before the significant
temperature rise (TR). On the day before the temperature
rise and the expected day of ovulation the probabilities
were that the lowest percentage of false green days was
determined before the day of temperature rise (4.88%) and
on the day of temperature rise (6.32%) itself.

Discussion

Our findings indicate that the fertility tracker was able to
adapt a diverse set of conditions and cycle characteristics and
provide personalised fertility statuses for users based on daily
BBT readings and menstruation data. We observed a wide
variation in BBT measurement with an overall average of
69.77% [SD 23.5] measured cycle days. A majority of women
(53.1%) were using the device 80-100% of the time during
their cycle. We identified a direct linear relationship between
the number of measurements and output of the fertility
tracker. As women continuously measure their BBT with the
device, the less undefined (yellow) days reported to the user,
thus showing the personalisation of fertility information.

For users who measured temperature 80-100% of days,
the ratio of green (42.4%) to red (41.4%) days was close to
balanced and closely matched to the number of fertile and
infertile days displayed by other methods such as the
symptothermal method [18]. This data shows that a major-
ity of women are able to use the device correctly and
measure their temperature consistently enough through
the cycle over time. Less than 1% (0.6%) of green days

were identified as false positive within the six day fertile
window or two days after the significant temperature rise.
A closer examination of the false positive green days
showed that the largest fraction (49.42%) was displayed
five days before the significant temperature increase (Table
5). According to Fertility Tracker, the probability that fertile
couples will successfully fertilise five days before the signifi-
cant temperature rise is 6.8% [19].

Handle and Wahlstrom highlight that when using the
output from a proposed ovulation detection algorithms
(like the algorithm used in this device), users must consider
not only the uncertainty in the relative time difference
between the detected temperature shift and ovulation, but
also the statistical uncertainty of the detection methods
due to noisy measurement [20]. We found less temperature
measurement noise to have a linear influence on the
increase of infertile (green) days as well as undefined (yel-
low) days. The results also suggest that the simulation data
and the real-world data are comparable. Thus, the number
of green days displayed decreases with increasing standard
deviation of the measured days. The opposite is true for
the days displayed in yellow by the Fertility Tracker, which
increase with increasing standard deviation of the meas-
ured days. For the real-world data, the number of days dis-
played as red increased with increasing standard deviation.
This increase occurred only with a sigma of more than
0.2°C. Interestingly, there was no difference of 60% (45.2%
red) or 90% (45.6% red) measured by users. Therefore, the
algorithm is fairly robust to Gaussian temperature measure-
ment noise, while temperature noise and skipping seems
to have a direct effect on fertility identification.

Performance of fertility tracker under
unique conditions

Table 4 exemplifies the Fertility tracker’s ability to adapt
and provide fertility status information to users of different
ages, BMI, cycle lengths, and user variability. The Fertility
Tracker found an average of 39.6% red, 41.8% green and
16.5% yellow days in the sensitivity analysis (n=300). The
main variability in the menstrual cycle is related to changes
in the follicular phase (pre-ovulation) which averages
13-16 days. The luteal phase (post-ovulation) is usually con-
stant at 10-16days due to the fixed lifespan of the corpus
luteum [15]. The mean length of the pre-ovulation phase in
this analysis was 16.8 [SD 2.9] days while the mean post-
ovulation phase length was 12.8 [SD 1.6] days long. Studies
have shown that the pre-ovulation phase is on average
longer than generally assumed, with an average of
16.9days for pre-ovulation and 12.4days post ovulation.
Furthermore, a strong linear correlation between menstrual
cycle length and the pre-ovulation phase length with



116 . N.

Table 4. Numbers of Cycles, the mean of age and BMI; the percentage of infertile, possible fertile, undefined days; the percentage of false positive fertile (green) days and monophasic cycles; the mean cycle, Pre- and Post-Ovulation

Phase length, the mean Pre- and Post-Ovulation temperature step in correlation to different Cycle scenarios.

Temp
Post-Ov (C°)

Pre-O Post-Ov Temp
Phase (d) Pre-Ov (C°)

Phase (d)

cycle length

% false
positive (green)

% undefined

% infertile % possible

measured

(days)

(%)

Mono

(yellow)

fertile (red)

(green)

BMI

age

cycles

Cycle Scenario

VAN DE ROEMER ET AL.

36.1 [0.1]

12.4 [1.36]

0.5[ 0.2%]
0.5 [0.2%]
0.9 [0.3%]
1.5 [0.2%]
0.6 [0.2%]
1.1 [0.4%]
0.5 [0.2%]
1.5 [0.6%]
0.3 [0.1%]
0.2 [0.05%]
0.3 [0.1%]
0.2 [0.08*]
0.5 [0.2%]
0.3 [0.1%]
0.6 [0.1%]

o

27.1 [10.2]
30.4 [12.6]

45.1 [5.5]

39.1 [6.7]

27.42 [9.6]
29.5 [10.6]
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Table 5. Relationship between the distribution of false positive green days
and the probability of pregnancy.

Rise in
-5 -4 -3 -2 —1 temperature +1 +2
49.4% 14.9% 69% 43% 4.9% 6.3% 7.5% 5.7%

Total distribution of
false green days
in relation to the
fertile window

Probability of
pregnancy on the
different days of
the cycle [19]

6.8% 17.6% 23.7% 25.5% 21.2% 10.3% 0.8% 0.4%

increasing age has been demonstrated in a prior study
[16]. In the present work the same trend was found. The
pre-ovulation phase was significantly shortened from 17.05
[3.9] days (age 25-40) to 15.07 [4.2] days (age 40+).

Limitations

There were several limitations to this study. The retro-
spective nature of this study is limiting, although the
data set was large and robust. Furthermore, a large pro-
portion have not given their demographic data. Thus, for
the population’s characteristic, only 52.8% of the data set
could be used for the evaluation. Another limitation of
this study is that there is no information on whether
pregnancies were desired and how long the user used
the device to fulfil this desire. The determination of ovu-
lation was done retrospectively, therefore it cannot be
excluded that ovulation occurred at a later time. To min-
imise this limitation, the six-day fertile window in this
study was extended by two days (after the significant
temperature increase).

Conclusion

The data shows that women are able to use the device cor-
rectly and measure their temperature more consistently
throughout the cycle, thus self-efficacy of Fertility Tracker
increases over time. Consistent BBT measurement provides
more data for better performance of the device and less
undefined (yellow) days by Fertility Tracker. The analysis of
the data has shown that the temperature shift algorithm
used by Fertility Tracker is able to exclude the fertile win-
dow with very high accuracy and to detect the different
phases of the menstrual cycle. Further research is needed
to explore the efficacy of the device in a prospective study.
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Appendix

Preselection of data set up for analysis

The following guidelines were used for selecting 16 data sets of 20
files each out of the basic 5329 Metadata files for the sensitive ana-
lysis. The columns were filtered/sorted according to the descriptions
below. The files are only allowed to be in one set, and the sets were
generated started with a.

a. ideal use
a. 20 data sets
b. randomly selected (Random generator)
c.  days between 365 and 1095
d. % measured > 90%
e. age between 18-35
b.  normal use
a. 20 data sets
b.  randomly selected (Random generator)
c. days between 365 and 1095
d. % measured > 75%
c. long cycles
a. 20 data sets
b.  days between 365 and 1095
c. % measured > 75%
d.  min. 6 completed cycles
e. max length of the cycle 50 days on average
f.  length mean sorted descending, top values chosen
d. short cycles
a. 20 data sets
b.  days between 365 and 1095
c. % measured > 75%
d. length mean sorted ascending, top values chosen

e. oldest
a. 20 data sets
b.  days > 365

c. % measured > 75%
d. age sorted descending, top values chosen

f. youngest
a. 20 data sets
b. days > 365
c. % measured > 75%
d. age sorted ascending, top values chosen

g. pregnancies

a. 20 data sets

b. days > 365

c. % measured > 75%

d. pregnancy sorted descending, top values chosen
h. irregular cycles

a. 20 data sets

b. days > 365

c. % measured > 75%

d. cycle length std. dev. sorted descending, top values chosen
i. regular cycles

a. 20 data sets

b. days > 365

Cc. % measured > 75%

d. cycle length std. dev. sorted ascending, top values chosen
j.  high temp step

a. 20 data sets

b.  days > 365

c. % measured > 80%

d. temp. step avg. sorted descending, top values chosen
k. low temp step

a. 20 data sets

b.  days > 365

c. % measured > 80%

d. temp step avg sorted ascending, top values chosen

I.  high BMI
a. 20 data sets
b. days > 365

c. % measured > 80%
d.  BMI sorted descending, top values chosen
low BMI
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a. 20 data sets b. % measured > 60%
b. days > 365 c. days sorted ascending, top values chosen
c. % measured > 80% o. short use
d.  BMI sorted ascending, top values chosen a. 20 data sets
n. long use b.  days in use < 90

a. 20 data sets c.  randomly selected (Random generator)



